
Transformers without
Normalization

Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, Zhuang Liu
FAIR Meta, New York University, MIT, Princeton University

March 14, 2025

Plan

❏ Introduction

❏ Background: Normalization Layers

❏ Dynamic Tanh Observations

❏ Dynamic Tanh Experiments

❏ Efficiency of Dynamic Tanh: time, ablations, other methods

❏ Conclusion

❏ Your questions

2

Introduction

Normalization Layer often produces tanh-like input-output mapping

Dynamic Dynamic Tanh (DyT) drop-in replacement for normalization layers in
Transformers

DyT(x) = tanh(αx)

3

Introduction

4

Normalization Layers

Layer normalization is a crucial technique in transformer models that helps
stabilize convergence and accelerate training by normalizing the inputs to
each layer. Due to that, the model processes information consistently,
regardless of the input’s scale or distribution.

Given an input x with shape (B,T,C), where B is the batch size, T is the number of
tokens, and C is the embedding dimension per token:

5

Batch Normalization (BN)

The first modern normalization layer

It is specifically designed to address internal covariate shift : the distribution of
activations changes during training due to the constant updates to the network’s
weights

Batch normalization normalize the activations within each layer, ensuring they
follow a consistent distribution with a mean of zero and a standard deviation of
one

6

Layer Normalization (LN), Root Mean Square Normalization

The major types of normalization layers in Transformer architectures

BN does not work effectively with self-attention mechanisms of transformers as it
struggles with sequential data, therefore, LN

LN computes the mean and standard deviation for each row across all
features, while in BN the normalization is done across the batch

7

Tanh-like Mappings with Layer Normalization

For all three models, the input-output relationship in earlier LN layers are mostly linear, resembling a straight line in
an x-y plot. However, the deeper LN layers represent curves highly resemble S-shaped curves represented by a
tanh function.

For such an S-shaped curve, the central part represented by points with x values close to zero, is still mainly in a
linear shape. However, there are points (“extreme” values) that clearly fall out of this range. Normalization layers’ main
effect for these values is to squash them into less extreme values, more in line with the majority of points.

8

Dynamic Tanh (DyT)

Given an input tensor x, a DyT layer is defined as follows:

DyT(x) = γ∗tanh(αx) + β

❏ α is a learnable scalar parameter that allows scaling the input differently based on its range,
accounting for varying x scales

❏ γ and β are learnable, per-channel vector parameters

Integrating DyT layers into an existing architecture is straightforward: one DyT layer replaces one
normalization layer. Other parts of the activation functions or networks themselves remain intact.

Important: DyT is not a new type of normalization layer. However, it preserves the effect of
normalization layers in squashing the extreme values in a non-linear fashion while almost
linearly transforming the very central parts of the input.

9

DyT Experiments

Supervised learning in vision (classification accuracy):

Self-supervised learning in vision

Self-supervised learning in vision (accuracy):

10

DyT Experiments

Diffusion Transformer (DiT) models (image generation quality, lower is better):

Large Language Models
(training loss and average performance):

11

DyT Experiments

Self-supervised learning in speech (validation loss):

DNA sequence modeling (classification accuracy):

12

Efficiency of DyT

13

Time evaluation

To compare and evaluate inference and training time of DyT and LN:
LLaMA 7B with RMSNorm vs LLaMA 7B with DyT to measure the total time taken
for inference and for training using a single sequence of 4096 tokens

14

Ablations of tanh and α

Removing and replacing tanh by other squashing functions lead to a significant
drop in performance (e.g., classification accuracy):

Removing the learnable α while retaining the squashing functions (tanh, hardtanh,
and sigmoid) results in performance degradation across all squashing functions:

15

Comparison with Other Methods

❏ Initialization-based methods: Fixup and SkipInit adjust the initial
parameter values to prevent large gradients and activations at the start of
training enabling stable learning without normalization layers

❏ Weight-normalization-based methods: σReparam impose constraints
on network weights throughout training to maintain stable learning dynamics
in the absence of normalization layers

16

Conclusion

☆Transformers can be trained without normalization layers☆

★DyT captures the behavior of NLs, thus, it can replace them ★

☆DyT adjusts the input activation range via a learnable scaling factor α☆

 ★DyT squashes the extreme values through an S-shaped tanh function★

17

