Attention is all you need

NIPS 2017

Ashish Vaswani* Google Brain avaswani@google.com

Llion Jones*
Google Research
llion@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

A Landmark Raper

- paper introducing the Transformer architecture
- method proposed for translation but transformer found plenty of applications (BERT, LLMs, Visual Transformers)
- ▶ 7th most cited scientific paper*

* Nature, 2025 (https://www.nature.com/articles/d41586-025-01125-9)

Context: Translating Natural Language

- Generative Task:
 - ▶ Input: a sequence of tokens to translate
 - Output: a sequence of token in another language
 - Task: predicting the next token based on the full input and the previous tokens of the output
- ► Machine Learning:
 - Everything is converted to vector in an embedding space
 - ► Embeddings are processed by a model with learnable parameters

Challenge: Taking into account the context

- Example: "A school of whales was under the boat"
- ► Traduction: Une [?] ...
- ▶ The meaning of a word is influenced by other words.
- ▶ And the next word depends on what was written before.

Enriching embeddings with attention

Enriching embeddings with attention

- 3 learnable functions: Query, Key and Value
- Attention coefficient from embedding j to embedding i: $a_{ij} = \sigma(\langle Query(x_i).Key(x_j) \rangle)$
- Output at position i: $y_i = \sum a_{ij} Value(x_j) = \sum \sigma(\langle Query(x_i).Key(x_j) \rangle) Value(x_j)$

Multi-Head Scaled Dot-Product Attention layer

- Output at position i: $y_i = \sum \sigma(\langle x_i Q. x_j K \rangle) x_j V$
- Computing all embeddings at once:

$$Y = F(X) = softmax(\frac{XQ(XK)^T}{\sqrt{d_k}})XV$$

▶ Multi-Head Attention: $Y = (F_1(X) \oplus ... \oplus F_h(X))W$

The encoder

- ► Input Embedding: converting words to vectors
- ► **Positional Encoding**: modifying vectors according to the position:
 - $PE_{(pos,2i)} = sin(pos/100000^{2i/d_{model}})$
 - $ightharpoonup PE_{(pos,2i+1)} = cos(pos/100000^{2i/d_{model}})$
- ► Feed Forward: linear layer on each embeddings individually

Adding the Decoder

- ► Output: the beginning of the translated sentence
- Cross Attention: Query is computed based on output tokens, Key and Value are computed based on input tokens

Main strengths

- ► Allows parallelisation
- ► Allows long-range dependencies (solves the vanishing gradient problem)

Impressive performances

		EN-GE score	EN-GE Tr.Cost	EN-FR score	EN-FR Tr. Cost
Previous b	est model	26.36	7.7*10 ¹⁹	41.29	1.2*10 ²¹
Transform	er	28.4	2.3*10 ¹⁹	41.8	2.3*10 ¹⁹

Transformer Architecture in later models

Source: ¹https://sushant-kumar.com/blog/bert, ²Yumar Jamil youtube, ³An Image is worth 16*16 words, ICLR 2021

(Appendix) Recurrent models: the most common method up to then

Also: Long Short-Term Memory Networks, Gated Recurrent Neural Networks